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ABSTRACT

This paper considers the dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to a
moving load. The isogeometric approach is used for the spatial discretization of the weak form of the
equation of motion. Both the reference geometry and the solution space are represented using the
same NURBS basis functions that guarantee an accurate description of the beam centerline. The time
integration is done by the explicit technique. The presented formulation is validated by the
comparison with the existing results from the literature for the curved beam subjected to a constant
load moving with a constant velocity. In addition, the influence of the moving load velocity on the

dynamic response of a spatially curved beam has been investigated.
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1. INTRODUCTION

Beam-like structures are often subjected to dynamic loads during their lifetime.
Consequently, numerical methods are essential for more accurate and reliable prediction
of their dynamic behavior. The standard dynamic load case for cranes and bridges is a mass
that moves along the structure. The moving mass is usually modeled as a moving force with
constant magnitude and direction. Such an approach is referred to as a “moving load”
model, where the inertial term of the moving mass is neglected. The majority of the
research in this field is related to the analysis of a mass moving along a straight beam. One
of the earliest investigations was carried out by Stokes in 1849 [1], where the influence of
the moving mass on the plane straight Bernoulli-Euler beam was considered analytically
using the moving load model.

Due to the aesthetic and functional requirements in the design process, curved spatial beam
elements are common in structural engineering. The geometrical model of the curved
spatial beam requires the spatial curve, which is usually defined using computer-aided
design (CAD) software packages. To accurately describe the free-form curves and the curves
of conic sections such as a circle, ellipse, parabola and hyperbola, CAD packages utilize the
NURBS (Non-Uniform Rational B-Spline) basis functions. Furthermore, the computation of
the dynamic response of complex spatially curved beams in practical applications is
performed using the Finite element method (FEM), which is implemented in many software
packages for structural analysis. A direct relation between the CAD and FEM has not yet
been established [2], leading to a costly and time-consuming iterative design process. The
isogeometric approach establishes a direct relationship between the geometry and the
unknown fields of the structure [2]. This is enabled by using the NURBS functions as basis
functions for both reference geometry and solution spaces of a numerical model. Therefore,
the same basis functions are applied for the geometry and kinematics, which eliminates the
errors due to the geometric approximation in a spatially discretized model. In order to
improve the mesh, three types of mesh refinement are used in the isogeometric approach,
denoted as H-, P-, and K-methods [2].

A dynamic analysis of an arbitrarily curved spatial beam subjected to a moving load is
studied in this paper. A short review on the NURBS basis functions is given in Section 2 and
followed by a representation of the beam geometry. The governing equation of motion of
the Bernoulli-Euler isogeometric beam element is briefly given in Section 4, while more
details can be found in the authors’ previous paper [3]. The moving load model is presented
in Section 5, followed by the numerical example of a spatially curved beam subjected to the
moving load presented in Section 6. At the end, the main conclusions have been drawn.

2. BASICS OF NURBS

The exact shape of an arbitrary curve C(§) in Euclidean 3D space can be represented as:
ClE)=D R, (£)C, (1)
i=1

where Rip(€) is the i-th NURBS basis function, p is the function degree, C; is the position of
the control point i, while n is the number of basis functions and control points. NURBS
functions are derived from the B-spline functions:
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z Ni (5) W,
Ri,p (g) = n - (2)
; zjlej,p(f) Wi

where wi is the i-th function weight. In order to define B-spline functions, the Cox de Boor
algorithm is often applied [4].

For the case of a zero degree (p = 0), the B-spline functions are defined as:

L ifgelg, gl

0, otherwise

N0 (&) ={

while for the polynomial degree greater than zero (p > 0):

_é — é: §f+p—1 - 5 .
=N, (§)+—————N,,,. (&), el &l
Ni’p (5) - é“’ _5’ ' § §f+p+1 _§i+1 ' § | 6 - 5 é: (4)
0, otherwise

The B-spline functions are polynomial functions defined in a parametric domain (§) using
the knot vector. This vector represents a set of non-decreasing real numbers, the knots.

Important properties of the B-spline function, as well as the NURBS functions, used in the
following derivations, are the non-negativity and the partition of unity over the parametric
domain. More about the B-spline and NURBS basis functions can be found in [4].

As mentioned in the previous section, there are several important features of the NURBS-
based parameterization. For example, it is possible to exactly describe the initial smooth
geometries, which promises more accurate simulations. Furthermore, besides standard H-
and P- refinement strategies, the isogeometric approach allows the definition of an
interelement continuity up to C*?1, known as K-refinement. The high smoothness of the
kinematic field often returns improved convergence rates [5,6].

3. BEAM GEOMETRY

Due to the assumptions of beam theories, all kinematic and stress quantities of a beam can
be given as a function of the beam centerline. In general, the beam centerline has an
arbitrary shape in the Euclidean three-dimensional space, forming a curved line. The
formulation of a curved beam is conducted using the curvilinear coordinate system
attached to the beam centerline.
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Figure 1. Centerline of a curved beam with corresponding control points

Using the NURBS parameterization, the position vector of a curved line is defined as:
(E)=DR,, (5)
i=1

where ri is the position of the i-th control point, Figure 1. To fully define the beam
continuum, a unique triad must be attached to each point of a curve. Here, this triad is
aligned with the Frenet-Serret frame. The basis vectors are defined using the well-known
relations of differential geometry [7] and the relations between the arc-length and NURBS
parameterizations:

_dr _drds _ds

& T T e T dsde az Vom
1dé d

gZ:n:——é—i (6)
K ds d£ | |g,|

g, —b- g, xn
|31X“|

where t, n and b are orthonormal basis vectors of the beam centerline obtained using arc-
length parameterization (Frenet-Serret frame of reference), while g1, g2 and gs form
orthogonal vector basis with respect to the parametric coordinate. The vector gi is collinear
with the tangent t, while the vectors g2 and gz are in the beam cross-section plane. In the
previous relations, K is the modulus of curvature, while g11 is the component of the metric
tensor of the beam centerline:

g, 0 O
g,=| 0 1 0 det(g,)=g,, =0 (7)
0 0 1

By using the well-known Frenet-Serret relations and Eq. (6), the derivatives of the basis
vectors with respect to the parametric coordinate are:
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1
8., | gk 0 g,
gz,l = _gK 0 \/ET gz (8)
€31 0 —\/ET 0 g;

where ()1 represents the derivative with respect to the parameter &, 11 is the Christoffel
symbol of the second kind, and zis the torsion of the beam centerline.

In this paper, the beam cross-section principal axes coincide with the basis vectors g2 and
g3. If this condition is not satisfied, the basis vectors g2 and g3 need to be rotated around
the basis vector g1 to align them with the principal axes, forming a new moving frame of
reference [8].

Using the introduced basis vectors, the position vector of an arbitrary point of the beam can
be defined as:

f=r+77g2+§g3 (9)

where n and  are the coordinates along the principal axes of the cross-section.
Consequently, the first basis vector of an arbitrary point is defined as:

N

. dr
8 :E:gm +778,, +§ga,1 =0,8, +nK,8, +§K1g3 (10)

Due to the assumption of the rigid cross-section, the vectors gz and g3 are translated from
the beam centerline to an arbitrary point. From the last equation, it is evident that the basis
vector g, is not perpendicular to the vectors gz and gs. However, in the frame of linear
analysis, it is possible to orthogonalize these vectors by introducing a new coordinate
system [8,9].

4. ISOGEOMETRIC BERNOULLI-EULER BEAM FORMULATION

Due to the external impact, the beam centerline has a new position defined with the current
position vector:

r=r+u (11)

where u represents the displacement vector of the beam centerline. Using the isogeometric
approach, the displacement vector can be represented as:

u(é) = Zn:Riyp(é)u,. = Zn:R,’p(gﬁ)u‘.'"im (12)

where u; is the displacement vector of the i-th control point. Note that the displacement
vector and the reference geometry of the beam centerline are represented using the same
basis functions, which is the fundamental property of the isogeometric approach.
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Formulation of the spatial Bernoulli-Euler isogeometric beam is conducted by applying the
convective coordinate system, and the position vector of an arbitrary point of a deformed
beam is:

A¥

i =f+ng, +<g, (13)
The basis vectors of the deformed configuration can be expressed as:
g,=8,+u, (14)

where unm is the gradient of displacement along the m™ axis of the (£,n,£) coordinate system.

Using Egs. (9), (13) and (14), the displacement vector of an arbitrary point of a beam is
defined as:

U=u+nu, +Ju, (15)

Using Eq. (15), the acceleration vector of an arbitrary point is obtained as the second
material time derivative:

a=(0) =i+, + i, (16)
In addition, the variation of displacement of an arbitrary point is obtained from Eq. (15) as:
6t =3S8u+ndu, +¢ou, (17)

The components of the Green-Lagrange strain tensor are:
~ ~ 1 Ak "
g,"gj_g,"gj):_(gij_gij) (18)

The assumption of rigid cross-cross section returns only three non-zero components of the
strain tensor:

&y = %(éil -0y )

&y :%(ézz _gAlZ) (19)

by = %(é; —053 )

By substituting the second Bernoulli-Euler assumption of orthogonality between cross-
section and centerline into the previous equations, the required kinematic relations are
obtained. Degrees of freedom of the isogeometric Bernoulli-Euler beam are the
displacements of the beam centerline and the torsional rotation of the beam cross-section.
The detail derivations of the kinematic relations can be found in [3].
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Assuming the linear elastic material behavior, the constitutive relations can be written as:
Si 9, p0 j am
S =2uél + 25 (20)
where 5; are the mixed components of the second Piola-Kirchoff stress tensor, while yand

A are Lame’s constants.

In order to obtain the discrete equations of motion, the principle of virtual work is used:

[ pa-stav, + [s: sedv, = [ 50y, (21)
A vy A

where p is the mass density, while f is the external load. By substituting Eqgs. (16), (17),
(19), and (20) into Eqg. (21), the governing equation of the motion of the Bernoulli-Euler
isogeometric curved beam subjected to the moving load is obtained:

Mg+Kq=Q (22)

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control
forces, while q is the displacement vector of the control points. The solution of this equation
requires the application of a time integration procedure. The explicit step-by-step
integration has been applied using the finite differences method [10]. The reduced
integration has been applied in Eq. (21) [11], and implemented into the original MATLAB
code [12].

5. MOVING LOAD

A mass moving along the structure generates a dynamic response. This load can be modeled
as a single load with constant magnitude and direction, fo, that moves along a beam with
the constant velocity:

f(t)=f,-5(&-Vv.t)

v, =g _dsde _ V. (23)

‘T dt dtds g

where Veand V are the magnitudes of velocity with respect to the parametric and arc-length
coordinates, respectively.

The vector of equivalent forces of the i-th control point in the case of a point load is:

Q, = [£:R,,(£)\Jods=1-R (£, )\g (24)

where &n is the position of the moving load on a beam.
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6. NUMERICAL EXAMPLES

6.1. VALIDATION AND CONVERGENCE STUDY

The validation study of the proposed formulation is given in this section. A horizontally
curved arch in the x-y plane with the length L = 24 m and the subtended angle o = 30° is
subjected to the out-of-plane and in-plane moving load with constant speed V = 40 m/s.
The displacements and the torsional rotations at both ends of the beam are restrained. The
beam geometry has been modeled with the cubic NURBS, as given in Figure 2.

€,(23.73,0,0)

w,=1

C,(7.82,2.090) m
w,=0.977 _
o -

g

E=32.2GPa
£ = 2400 kg/m?

Figure 2. The arch subjected to the moving load

The material is homogeneous and defined using the Young’s modulus E = 32.2 GPa, the
Poisson’s ratio v = 0.2 and the mass density p = 2400 kg/m?3, while the cross-section is
rectangular with the dimensions b/h = 5/1.8 m. The beam is subjected to the out-of-plane
load Fw=-293.32 kN and the in-plane load F, = 1043.71 kN directed towards the arch center.
The displacements of the beam midpoint obtained using the isogeometric approach have
been compared with the semi-analytical results from the literature, applicable only for
simply supported arches [13]. It is important to point out that the beam model presented
in [13] is based on the Timoshenko beam theory. In this example, the validation study, as
well as the convergence study, are conducted using the P-refinement procedure.

The in-plane (u) and the out-of-plane (w) displacement components of the midpoint
obtained using the P-refinement procedure are presented respectively in Figure 3 and
Figure 4.

In addition, the same example is used to calculate the influence line of the beam midpoint
displacement components by neglecting the inertial part of the beam in the principle of
virtual work.
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-0.05

-0.1

é -0.15 Yang et al. [13]
——  P=3(8DOFs)
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— - P=6(20DOFs)
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== 1+ |nfluence line
-0.35

Figure 3. Comparison of the in-plane displacement component (u) of the beam midpoint

By comparing the results of the beam midpoint displacements obtained using the dynamic
and static analysis, a significant difference can be observed, especially for the case of the
out-of-plane displacement.

0.4
0.2
0
-0.2
E -0.4
£
‘g 06 Yang et al. [13]
' P =3 (8 DOFs)
08 P =4 (12 DOFs)
P =5 (16 DOFs)
1 P =6 (20 DOFs)
L P = 7 (24 DOFs)
’ Influence line
-1.4

Figure 4. Comparison of the out-of-plane displacement component (w) of the beam midpoint

6.2. PARAMETRIC STUDY

In this example, the effects of the moving load velocity on the dynamic response of a curved
cantilever beam are investigated. The geometry of the beam is defined using five control
points with a unit weight vector and 3™ order B-Spline basis functions, Figure 5. The beam
is clamped at the first beam control point C1(0,0,0). The beam material is defined using the
Young’s modulus E = 32.2 GPa, the Poisson’s ration i/ = 0.2 and the mass density p = 2400
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kg/m?3. The cross-section of the beam is circular with the diameter R = 0.1 m. Moving load
has constant direction and magnitude F = 100 kN. The load is moving along the beam with
constant velocity V. In order to investigate the influence of the moving load velocity on the
response of the curved beam, the displacement components at the free end were
calculated. The calculations have been conducted using the isogeometric beam model with
the 7" order B-Spline basis function (46 DOFs) obtained using the P-refinement procedure.

@ C,(9,23)
g ‘x\W: 1

/¥ c6,2,3)
w=1

C:(12,0,0)
E=32.2 GPa w=1
£ = 2400 kg/m?
----- 9 C,(3,0,0) =02
w=1

€(0,0,0)
w=1

Figure 5. Cantilever spatial beam subjected to moving load

To compare the displacement components of the beam at the free end, the traveling time
of the moving load has been divided by the total traveling time, forming a normalized
dimensionless time coordinate, t[-]. Components of the beam displacements at the free end
are presented in Figures 6 — 8. As the linear relation between the moving load magnitude
and beam response holds for the linear dynamic formulation, the components of
displacement are divided by the moving load magnitude, forming normalized
displacements. Maximum values for u and w displacement components were detected for
the moving load velocity of V = 9.25 m/s, while the maximum displacement component v
occurred for the velocity of V=22.5 m/s. In addition, the influence line has been calculated.
The difference between the displacement components obtained using static analysis and
dynamic analysis in case of the load velocity V = 1 m/s is not significant. However, the
differences between displacement components increase as the load velocity increases,
which can be observed in the case of the w displacement component. In addition, in the
case of u and v displacement components, the moving load velocity can also affect the sign
of the displacement components.
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-2
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tll

Figure 6. Normalized displacement component u with respect to the moving load velocity

V=22.5m/s
N

V=5m/s

Influence line

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tl]

Figure 7. Normalized displacement component v with respect to the moving load velocity
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Figure 8. Normalized displacement component w with respect to the moving load velocity

7. CONCLUSIONS

The linear dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to a moving
load is presented. Spatial discretization is performed by the isogeometric approach, while
the explicit procedure is used for the time integration. To validate the proposed method,
the numerical study of the curved spatial beam subjected to the point load has been carried
out. A satisfactory agreement has been observed between the results obtained using the
proposed method and the results from the literature. In addition, the influence line for the
displacement of the beam midpoint has been calculated, and the difference between the
static and dynamic results is shown.

The influence of the moving load velocity on the arbitrary curved spatial beam has been
investigated. It can be observed that the maximum displacement has occurred for the
specific moving load velocity (critical velocity), and it is not the same for all beam
displacement components. Also, the moving load velocity can affect the sign of the
displacement. The accurate modeling of the moving load is crucial for the dynamic analysis
of engineering structures such as bridges. In future work, more accurate models will be
studied, taking into consideration the inertial part of the moving load. In addition, a
nonlinear analysis, implicit procedures, and effects of the higher-order metric will be
considered as well [14, 15].
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JIMHEAPHA ANHAMWYKA AHANTN3A YTULAJA MOKPETHOI ONTEPEREHA HA
MPOCTOPHOJ KPUBOJIMHNICKOJ BEPHY/IN-OJNNEPOBOJ TPEAU

CaxeTak: Y 0BOM pajy je npuKasaHa AMHAMW4Ka aHanu3a NPOCTOPHE KPUBOIMHMjCKe BepHyau-
OjnepoBe rpege nog ytvuajem NoKpeTHor ontepehetrba. M30reomeTpujcki NPUCTYN je NPUMEHEH Y
UM/by NPOCTOPHE AMCKpeTM3aumje cnabe popme jeaHaumHa KpeTarba rpeae. OBaj npucTyn ce H6asupa
Ha npumeHun nctux 6asHmx NURBS dyHKLUMja 3a onncrBakbe reomeTpuje U KMHEMaTUKE KPMBOAMHU]CKE
rpese, Yume je omoryheH TayaH NpuKas CUCTEMHE AWHKje rpede. BpemeHcKa MHTerpaumja jeaHaqnHa
je N3BplUeHa NPYMEHOM eKCcAnLMTHE meToze. MprKasaHa dopmynaumja je BannampaHa nopeherem
ca pesyaTaTMma M3 AUTepaType 3a C/ay4aj KPUBOAMHMjCKe rpefe onTepeheHe MOKPETHOM CUIOM
KOHCTAHTHOr WMHTeH3uTeTa M Hp3uHe. Takohe je m3BplIEHA WM aHanM3a yTuuaja HBp3nHe KpeTarba
NMOKPEeHe cuie Ha AMHAMMYKM Or0BOP NPOCTOPHE KPUBOAMHM]CKE rpeae.

Kmyure pujean: usoceomempujcku npucmyn, bepHynu-Ojneposa kpusa epeda, NOKpemHa cuna
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