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ABSTRACT 

This paper considers the dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to a 
moving load. The isogeometric approach is used for the spatial discretization of the weak form of the 
equation of motion. Both the reference geometry and the solution space are represented using the 
same NURBS basis functions that guarantee an accurate description of the beam centerline. The time 
integration is done by the explicit technique. The presented formulation is validated by the 
comparison with the existing results from the literature for the curved beam subjected to a constant 
load moving with a constant velocity. In addition, the influence of the moving load velocity on the 
dynamic response of a spatially curved beam has been investigated. 
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1. INTRODUCTION  

Beam-like structures are often subjected to dynamic loads during their lifetime. 
Consequently, numerical methods are essential for more accurate and reliable prediction 
of their dynamic behavior. The standard dynamic load case for cranes and bridges is a mass 
that moves along the structure. The moving mass is usually modeled as a moving force with 
constant magnitude and direction. Such an approach is referred to as a “moving load” 
model, where the inertial term of the moving mass is neglected. The majority of the 
research in this field is related to the analysis of a mass moving along a straight beam. One 
of the earliest investigations was carried out by Stokes in 1849 [1], where the influence of 
the moving mass on the plane straight Bernoulli-Euler beam was considered analytically 
using the moving load model. 

Due to the aesthetic and functional requirements in the design process, curved spatial beam 
elements are common in structural engineering. The geometrical model of the curved 
spatial beam requires the spatial curve, which is usually defined using computer-aided 
design (CAD) software packages. To accurately describe the free-form curves and the curves 
of conic sections such as a circle, ellipse, parabola and hyperbola, CAD packages utilize the 
NURBS (Non-Uniform Rational B-Spline) basis functions. Furthermore, the computation of 
the dynamic response of complex spatially curved beams in practical applications is 
performed using the Finite element method (FEM), which is implemented in many software 
packages for structural analysis. A direct relation between the CAD and FEM has not yet 
been established [2], leading to a costly and time-consuming iterative design process. The 
isogeometric approach establishes a direct relationship between the geometry and the 
unknown fields of the structure [2]. This is enabled by using the NURBS functions as basis 
functions for both reference geometry and solution spaces of a numerical model. Therefore, 
the same basis functions are applied for the geometry and kinematics, which eliminates the 
errors due to the geometric approximation in a spatially discretized model. In order to 
improve the mesh, three types of mesh refinement are used in the isogeometric approach, 
denoted as H-, P-, and K-methods [2]. 

A dynamic analysis of an arbitrarily curved spatial beam subjected to a moving load is 
studied in this paper. A short review on the NURBS basis functions is given in Section 2 and 
followed by a representation of the beam geometry. The governing equation of motion of 
the Bernoulli-Euler isogeometric beam element is briefly given in Section 4, while more 
details can be found in the authors’ previous paper [3]. The moving load model is presented 
in Section 5, followed by the numerical example of a spatially curved beam subjected to the 
moving load presented in Section 6. At the end, the main conclusions have been drawn. 

2. BASICS OF NURBS 

The exact shape of an arbitrary curve C(ξ) in Euclidean 3D space can be represented as: 

,
1

( ) ( )
n

i p i
i

Rξ ξ
=

=∑C C  (1) 

where Ri,p(ξ) is the i-th NURBS basis function, p is the function degree, Ci is the position of 
the control point i, while n is the number of basis functions and control points. NURBS 
functions are derived from the B-spline functions: 
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where wi is the i-th function weight. In order to define B-spline functions, the Cox de Boor 
algorithm is often applied [4]. 

For the case of a zero degree (p = 0), the B-spline functions are defined as: 
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while for the polynomial degree greater than zero (p > 0): 
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The B-spline functions are polynomial functions defined in a parametric domain (ξ) using 
the knot vector. This vector represents a set of non-decreasing real numbers, the knots.  

Important properties of the B-spline function, as well as the NURBS functions, used in the 
following derivations, are the non-negativity and the partition of unity over the parametric 
domain. More about the B-spline and NURBS basis functions can be found in [4]. 

As mentioned in the previous section, there are several important features of the NURBS-
based parameterization. For example, it is possible to exactly describe the initial smooth 
geometries, which promises more accurate simulations. Furthermore, besides standard H- 
and P- refinement strategies, the isogeometric approach allows the definition of an 
interelement continuity up to Cp-1, known as K-refinement. The high smoothness of the 
kinematic field often returns improved convergence rates [5,6]. 

3. BEAM GEOMETRY 

Due to the assumptions of beam theories, all kinematic and stress quantities of a beam can 
be given as a function of the beam centerline. In general, the beam centerline has an 
arbitrary shape in the Euclidean three-dimensional space, forming a curved line. The 
formulation of a curved beam is conducted using the curvilinear coordinate system 
attached to the beam centerline.  
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 Figure 1. Centerline of a curved beam with corresponding control points 

Using the NURBS parameterization, the position vector of a curved line is defined as:   

,
1

( ) ( )
n

i p i
i

Rξ ξ
=

=∑r r   (5) 

where ri is the position of the i-th control point, Figure 1. To fully define the beam 
continuum, a unique triad must be attached to each point of a curve. Here, this triad is 
aligned with the Frenet-Serret frame. The basis vectors are defined using the well-known 
relations of differential geometry [7] and the relations between the arc-length and NURBS 
parameterizations: 
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where t, n and b are orthonormal basis vectors of the beam centerline obtained using arc-
length parameterization (Frenet-Serret frame of reference), while g1, g2 and g3 form 
orthogonal vector basis with respect to the parametric coordinate. The vector g1 is collinear 
with the tangent t, while the vectors g2 and g3 are in the beam cross-section plane. In the 
previous relations, K is the modulus of curvature, while g11 is the component of the metric 
tensor of the beam centerline: 

( )
11

11

0 0
0 1 0 , det
0 0 1

ij ij

g
g g g g

 
 = = = 
  

 (7) 

By using the well-known Frenet-Serret relations and Eq. (6), the derivatives of the basis 
vectors with respect to the parametric coordinate are: 
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where (),1 represents the derivative with respect to the parameter ξ, Γ111 is the Christoffel 
symbol of the second kind, and τ is the torsion of the beam centerline. 

In this paper, the beam cross-section principal axes coincide with the basis vectors g2 and 
g3. If this condition is not satisfied, the basis vectors g2 and g3 need to be rotated around 
the basis vector g1 to align them with the principal axes, forming a new moving frame of 
reference [8]. 

Using the introduced basis vectors, the position vector of an arbitrary point of the beam can 
be defined as: 

2 3ˆ η ζ= + +r r g g  (9) 

where η and ζ are the coordinates along the principal axes of the cross-section. 
Consequently, the first basis vector of an arbitrary point is defined as: 

1 1,1 2,1 3,1 0 1 1 2 1 3

ˆ
ˆ d

g K K
d

η ζ η ζ
ξ

= = + + = + +
r

g g g g g g g           (10) 

Due to the assumption of the rigid cross-section, the vectors g2 and g3 are translated from 
the beam centerline to an arbitrary point. From the last equation, it is evident that the basis 
vector 1ĝ  is not perpendicular to the vectors g2 and g3. However, in the frame of linear 
analysis, it is possible to orthogonalize these vectors by introducing a new coordinate 
system [8,9]. 

4. ISOGEOMETRIC BERNOULLI-EULER BEAM FORMULATION 

Due to the external impact, the beam centerline has a new position defined with the current 
position vector: 

* = +r r u  (11) 

where u represents the displacement vector of the beam centerline. Using the isogeometric 
approach, the displacement vector can be represented as: 

, ,
1 1

( ) ( ) ( )
n n

m
i p i i p i m

i i

R R uξ ξ ξ
= =

= =∑ ∑u u i  (12) 

where ui is the displacement vector of the i-th control point. Note that the displacement 
vector and the reference geometry of the beam centerline are represented using the same 
basis functions, which is the fundamental property of the isogeometric approach.  
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Formulation of the spatial Bernoulli-Euler isogeometric beam is conducted by applying the 
convective coordinate system, and the position vector of an arbitrary point of a deformed 
beam is: 

* * *
2 3ˆ ˆ η ζ= + +r r g g   (13) 

The basis vectors of the deformed configuration can be expressed as: 

*
m m m= +g g u  (14) 

where um is the gradient of displacement along the mth axis of the (ξ,η,ζ) coordinate system. 

Using Eqs. (9), (13) and (14), the displacement vector of an arbitrary point of a beam is 
defined as: 

2 3ˆ η ζ= + +u u u u  (15) 

Using Eq. (15), the acceleration vector of an arbitrary point is obtained as the second 
material time derivative: 

( ) 2 3ˆ ˆ η ζ= = + +
..

a u u u u    (16) 

In addition, the variation of displacement of an arbitrary point is obtained from Eq. (15) as: 

2 3ˆδ δ ηδ ζδ= + +u u u u  (17) 

The components of the Green-Lagrange strain tensor are: 

( ) ( )* * *1 1ˆ ˆ ˆ ˆ ˆ ˆˆ
2 2ij i j i j ij ijg gε = ⋅ − ⋅ = −g g g g  (18) 

The assumption of rigid cross-cross section returns only three non-zero components of the 
strain tensor: 

( )*
11 11 11

1 ˆ ˆˆ
2

g gε = −   

( )*
12 12 12

1 ˆ ˆˆ
2

g gε = −  (19) 

( )*
13 13 13

1 ˆ ˆˆ
2

g gε = −   

By substituting the second Bernoulli-Euler assumption of orthogonality between cross-
section and centerline into the previous equations, the required kinematic relations are 
obtained. Degrees of freedom of the isogeometric Bernoulli-Euler beam are the 
displacements of the beam centerline and the torsional rotation of the beam cross-section. 
The detail derivations of the kinematic relations can be found in [3]. 
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Assuming the linear elastic material behavior, the constitutive relations can be written as: 

ˆ ˆ ˆ2j j j m
i i i mS µε λδ ε= +  (20) 

where ˆ i
jS  are the mixed components of the second Piola-Kirchoff stress tensor, while μ and 

λ are Lame’s constants. 

In order to obtain the discrete equations of motion, the principle of virtual work is used: 

0 0 0

0 0 0
ˆˆ ˆ ˆ:

V V V

dV dV dVρ δ δ δ⋅ + =∫ ∫ ∫a u S ε f u  (21) 

where ρ is the mass density, while f̂  is the external load. By substituting Eqs. (16), (17), 
(19), and (20) into Eq. (21), the governing equation of the motion of the Bernoulli-Euler 
isogeometric curved beam subjected to the moving load is obtained: 

+ =Mq Kq Q   (22) 

where M is the mass matrix, K is the stiffness matrix, Q is the vector of equivalent control 
forces, while q is the displacement vector of the control points. The solution of this equation 
requires the application of a time integration procedure. The explicit step-by-step 
integration has been applied using the finite differences method [10]. The reduced 
integration has been applied in Eq. (21) [11], and implemented into the original MATLAB 
code [12]. 

5. MOVING LOAD 

A mass moving along the structure generates a dynamic response. This load can be modeled 
as a single load with constant magnitude and direction, f0, that moves along a beam with 
the constant velocity: 

( ) ( )0t V tξδ ξ= ⋅ −f f   

d ds d V
V

dt dt ds gξ
ξ ξ

= = =   (23) 

where Vξ and V are the magnitudes of velocity with respect to the parametric and arc-length 
coordinates, respectively. 

The vector of equivalent forces of the i-th control point in the case of a point load is: 

( ) ( ), ,i i p i p m
d

R gd R g
ξ

ξ ξ ξ= ⋅ = ⋅∫Q f f  (24) 

where ξm is the position of the moving load on a beam. 
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6. NUMERICAL EXAMPLES 

6.1. VALIDATION AND CONVERGENCE STUDY 

The validation study of the proposed formulation is given in this section. A horizontally 
curved arch in the x-y plane with the length L = 24 m and the subtended angle α = 30° is 
subjected to the out-of-plane and in-plane moving load with constant speed V = 40 m/s. 
The displacements and the torsional rotations at both ends of the beam are restrained. The 
beam geometry has been modeled with the cubic NURBS, as given in Figure 2.  

 
 Figure 2. The arch subjected to the moving load 

The material is homogeneous and defined using the Young’s modulus E = 32.2 GPa, the 
Poisson’s ratio ν = 0.2 and the mass density ρ = 2400 kg/m3, while the cross-section is 
rectangular with the dimensions b/h = 5/1.8 m. The beam is subjected to the out-of-plane 
load Fw = -293.32 kN and the in-plane load Fu = 1043.71 kN directed towards the arch center. 
The displacements of the beam midpoint obtained using the isogeometric approach have 
been compared with the semi-analytical results from the literature, applicable only for 
simply supported arches [13]. It is important to point out that the beam model presented 
in [13] is based on the Timoshenko beam theory. In this example, the validation study, as 
well as the convergence study, are conducted using the P-refinement procedure.  

The in-plane (u) and the out-of-plane (w) displacement components of the midpoint 
obtained using the P-refinement procedure are presented respectively in Figure 3 and 
Figure 4. 

In addition, the same example is used to calculate the influence line of the beam midpoint 
displacement components by neglecting the inertial part of the beam in the principle of 
virtual work.  
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 Figure 3. Comparison of the in-plane displacement component (u) of the beam midpoint 

By comparing the results of the beam midpoint displacements obtained using the dynamic 
and static analysis, a significant difference can be observed, especially for the case of the 
out-of-plane displacement. 

 
 Figure 4. Comparison of the out-of-plane displacement component (w) of the beam midpoint  

6.2. PARAMETRIC STUDY 

In this example, the effects of the moving load velocity on the dynamic response of a curved 
cantilever beam are investigated. The geometry of the beam is defined using five control 
points with a unit weight vector and 3rd order B-Spline basis functions, Figure 5. The beam 
is clamped at the first beam control point C1(0,0,0). The beam material is defined using the 
Young’s modulus E = 32.2 GPa, the Poisson’s ration n = 0.2 and the mass density r = 2400 
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kg/m3. The cross-section of the beam is circular with the diameter R = 0.1 m. Moving load 
has constant direction and magnitude F = 100 kN. The load is moving along the beam with 
constant velocity V. In order to investigate the influence of the moving load velocity on the 
response of the curved beam, the displacement components at the free end were 
calculated. The calculations have been conducted using the isogeometric beam model with 
the 7th order B-Spline basis function (46 DOFs) obtained using the P-refinement procedure.  

 
Figure 5. Cantilever spatial beam subjected to moving load 

To compare the displacement components of the beam at the free end, the traveling time 
of the moving load has been divided by the total traveling time, forming a normalized 
dimensionless time coordinate, t[-]. Components of the beam displacements at the free end 
are presented in Figures 6 – 8. As the linear relation between the moving load magnitude 
and beam response holds for the linear dynamic formulation, the components of 
displacement are divided by the moving load magnitude, forming normalized 
displacements. Maximum values for u and w displacement components were detected for 
the moving load velocity of V = 9.25 m/s, while the maximum displacement component v 
occurred for the velocity of V = 22.5 m/s. In addition, the influence line has been calculated. 
The difference between the displacement components obtained using static analysis and 
dynamic analysis in case of the load velocity V = 1 m/s is not significant. However, the 
differences between displacement components increase as the load velocity increases, 
which can be observed in the case of the w displacement component. In addition, in the 
case of u and v displacement components, the moving load velocity can also affect the sign 
of the displacement components. 
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Figure 6. Normalized displacement component u with respect to the moving load velocity 

 
Figure 7. Normalized displacement component v with respect to the moving load velocity 
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Figure 8. Normalized displacement component w with respect to the moving load velocity 

7. CONCLUSIONS 

The linear dynamic analysis of a spatially curved Bernoulli-Euler beam subjected to a moving 
load is presented. Spatial discretization is performed by the isogeometric approach, while 
the explicit procedure is used for the time integration. To validate the proposed method, 
the numerical study of the curved spatial beam subjected to the point load has been carried 
out. A satisfactory agreement has been observed between the results obtained using the 
proposed method and the results from the literature. In addition, the influence line for the 
displacement of the beam midpoint has been calculated, and the difference between the 
static and dynamic results is shown.  

The influence of the moving load velocity on the arbitrary curved spatial beam has been 
investigated. It can be observed that the maximum displacement has occurred for the 
specific moving load velocity (critical velocity), and it is not the same for all beam 
displacement components. Also, the moving load velocity can affect the sign of the 
displacement. The accurate modeling of the moving load is crucial for the dynamic analysis 
of engineering structures such as bridges. In future work, more accurate models will be 
studied, taking into consideration the inertial part of the moving load. In addition, a 
nonlinear analysis, implicit procedures, and effects of the higher-order metric will be 
considered as well [14, 15]. 
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ЛИНЕАРНА ДИНАМИЧКА АНАЛИЗА УТИЦАЈА ПОКРЕТНОГ ОПТЕРЕЋЕЊА НА 
ПРОСТОРНОЈ КРИВОЛИНИЈСКОЈ БЕРНУЛИ-ОЈЛЕРОВОЈ ГРЕДИ  

Сажетак: У овом раду је приказана динамичка анализа просторне криволинијске Бернули-
Ојлерове греде под утицајем покретног оптерећења. Изогеометријски приступ је примењен у 
циљу просторне дискретизације слабе форме једначина кретања греде. Овај приступ се базира 
на примени истих базних NURBS функцијa за описивање геометрије и кинематике криволинијске 
греде, чиме је омогућен тачан приказ системне линије греде. Временска интеграција једначина 
је извршена применом експлицитне методе. Приказана формулација је валидирана поређењем 
са резултатима из литературе за случај криволинијске греде оптерећене покретном силом 
константног интензитета и брзине. Такође је извршена и анализа утицаја брзине кретања 
покрене силе на динамички одговор просторне криволинијске греде. 

Кључне ријечи: изогеометријски приступ, Бернули-Ојлерова крива греда, покретна сила 
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